3.2.29 \(\int x (d+e x^2)^{3/2} (a+b \text {csch}^{-1}(c x)) \, dx\) [129]

Optimal. Leaf size=270 \[ \frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {b \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x \text {ArcTan}\left (\frac {\sqrt {e} \sqrt {-1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{40 c^4 \sqrt {e} \sqrt {-c^2 x^2}}+\frac {b c d^{5/2} x \text {ArcTan}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1-c^2 x^2}}\right )}{5 e \sqrt {-c^2 x^2}} \]

[Out]

1/5*(e*x^2+d)^(5/2)*(a+b*arccsch(c*x))/e+1/5*b*c*d^(5/2)*x*arctan((e*x^2+d)^(1/2)/d^(1/2)/(-c^2*x^2-1)^(1/2))/
e/(-c^2*x^2)^(1/2)+1/40*b*(15*c^4*d^2-10*c^2*d*e+3*e^2)*x*arctan(e^(1/2)*(-c^2*x^2-1)^(1/2)/c/(e*x^2+d)^(1/2))
/c^4/e^(1/2)/(-c^2*x^2)^(1/2)+1/20*b*x*(e*x^2+d)^(3/2)*(-c^2*x^2-1)^(1/2)/c/(-c^2*x^2)^(1/2)+1/40*b*(7*c^2*d-3
*e)*x*(-c^2*x^2-1)^(1/2)*(e*x^2+d)^(1/2)/c^3/(-c^2*x^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.20, antiderivative size = 270, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {6435, 457, 104, 159, 163, 65, 223, 209, 95, 210} \begin {gather*} \frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {b c d^{5/2} x \text {ArcTan}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-c^2 x^2-1}}\right )}{5 e \sqrt {-c^2 x^2}}+\frac {b x \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) \text {ArcTan}\left (\frac {\sqrt {e} \sqrt {-c^2 x^2-1}}{c \sqrt {d+e x^2}}\right )}{40 c^4 \sqrt {e} \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-c^2 x^2-1} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-c^2 x^2-1} \left (7 c^2 d-3 e\right ) \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*(d + e*x^2)^(3/2)*(a + b*ArcCsch[c*x]),x]

[Out]

(b*(7*c^2*d - 3*e)*x*Sqrt[-1 - c^2*x^2]*Sqrt[d + e*x^2])/(40*c^3*Sqrt[-(c^2*x^2)]) + (b*x*Sqrt[-1 - c^2*x^2]*(
d + e*x^2)^(3/2))/(20*c*Sqrt[-(c^2*x^2)]) + ((d + e*x^2)^(5/2)*(a + b*ArcCsch[c*x]))/(5*e) + (b*(15*c^4*d^2 -
10*c^2*d*e + 3*e^2)*x*ArcTan[(Sqrt[e]*Sqrt[-1 - c^2*x^2])/(c*Sqrt[d + e*x^2])])/(40*c^4*Sqrt[e]*Sqrt[-(c^2*x^2
)]) + (b*c*d^(5/2)*x*ArcTan[Sqrt[d + e*x^2]/(Sqrt[d]*Sqrt[-1 - c^2*x^2])])/(5*e*Sqrt[-(c^2*x^2)])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 104

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 6435

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p +
1)*((a + b*ArcCsch[c*x])/(2*e*(p + 1))), x] - Dist[b*c*(x/(2*e*(p + 1)*Sqrt[(-c^2)*x^2])), Int[(d + e*x^2)^(p
+ 1)/(x*Sqrt[-1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]

Rubi steps

\begin {align*} \int x \left (d+e x^2\right )^{3/2} \left (a+b \text {csch}^{-1}(c x)\right ) \, dx &=\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {(b c x) \int \frac {\left (d+e x^2\right )^{5/2}}{x \sqrt {-1-c^2 x^2}} \, dx}{5 e \sqrt {-c^2 x^2}}\\ &=\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {(b c x) \text {Subst}\left (\int \frac {(d+e x)^{5/2}}{x \sqrt {-1-c^2 x}} \, dx,x,x^2\right )}{10 e \sqrt {-c^2 x^2}}\\ &=\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {(b x) \text {Subst}\left (\int \frac {\sqrt {d+e x} \left (-2 c^2 d^2-\frac {1}{2} \left (7 c^2 d-3 e\right ) e x\right )}{x \sqrt {-1-c^2 x}} \, dx,x,x^2\right )}{20 c e \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {(b x) \text {Subst}\left (\int \frac {2 c^4 d^3+\frac {1}{4} e \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x}{x \sqrt {-1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{20 c^3 e \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {\left (b c d^3 x\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {-1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{10 e \sqrt {-c^2 x^2}}-\frac {\left (b \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-1-c^2 x} \sqrt {d+e x}} \, dx,x,x^2\right )}{80 c^3 \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}-\frac {\left (b c d^3 x\right ) \text {Subst}\left (\int \frac {1}{-d-x^2} \, dx,x,\frac {\sqrt {d+e x^2}}{\sqrt {-1-c^2 x^2}}\right )}{5 e \sqrt {-c^2 x^2}}+\frac {\left (b \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x\right ) \text {Subst}\left (\int \frac {1}{\sqrt {d-\frac {e}{c^2}-\frac {e x^2}{c^2}}} \, dx,x,\sqrt {-1-c^2 x^2}\right )}{40 c^5 \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {b c d^{5/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1-c^2 x^2}}\right )}{5 e \sqrt {-c^2 x^2}}+\frac {\left (b \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x\right ) \text {Subst}\left (\int \frac {1}{1+\frac {e x^2}{c^2}} \, dx,x,\frac {\sqrt {-1-c^2 x^2}}{\sqrt {d+e x^2}}\right )}{40 c^5 \sqrt {-c^2 x^2}}\\ &=\frac {b \left (7 c^2 d-3 e\right ) x \sqrt {-1-c^2 x^2} \sqrt {d+e x^2}}{40 c^3 \sqrt {-c^2 x^2}}+\frac {b x \sqrt {-1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{20 c \sqrt {-c^2 x^2}}+\frac {\left (d+e x^2\right )^{5/2} \left (a+b \text {csch}^{-1}(c x)\right )}{5 e}+\frac {b \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) x \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {-1-c^2 x^2}}{c \sqrt {d+e x^2}}\right )}{40 c^4 \sqrt {e} \sqrt {-c^2 x^2}}+\frac {b c d^{5/2} x \tan ^{-1}\left (\frac {\sqrt {d+e x^2}}{\sqrt {d} \sqrt {-1-c^2 x^2}}\right )}{5 e \sqrt {-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 2.58, size = 233, normalized size = 0.86 \begin {gather*} \frac {\sqrt {d+e x^2} \left (8 a c^3 \left (d+e x^2\right )^2+b e \sqrt {1+\frac {1}{c^2 x^2}} x \left (-3 e+c^2 \left (9 d+2 e x^2\right )\right )+8 b c^3 \left (d+e x^2\right )^2 \text {csch}^{-1}(c x)\right )}{40 c^3 e}+\frac {b \sqrt {1+\frac {1}{c^2 x^2}} x \left (-8 c^5 d^{5/2} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {1+c^2 x^2}}{\sqrt {d+e x^2}}\right )+\sqrt {e} \left (15 c^4 d^2-10 c^2 d e+3 e^2\right ) \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {1+c^2 x^2}}{c \sqrt {d+e x^2}}\right )\right )}{40 c^4 e \sqrt {1+c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*(d + e*x^2)^(3/2)*(a + b*ArcCsch[c*x]),x]

[Out]

(Sqrt[d + e*x^2]*(8*a*c^3*(d + e*x^2)^2 + b*e*Sqrt[1 + 1/(c^2*x^2)]*x*(-3*e + c^2*(9*d + 2*e*x^2)) + 8*b*c^3*(
d + e*x^2)^2*ArcCsch[c*x]))/(40*c^3*e) + (b*Sqrt[1 + 1/(c^2*x^2)]*x*(-8*c^5*d^(5/2)*ArcTanh[(Sqrt[d]*Sqrt[1 +
c^2*x^2])/Sqrt[d + e*x^2]] + Sqrt[e]*(15*c^4*d^2 - 10*c^2*d*e + 3*e^2)*ArcTanh[(Sqrt[e]*Sqrt[1 + c^2*x^2])/(c*
Sqrt[d + e*x^2])]))/(40*c^4*e*Sqrt[1 + c^2*x^2])

________________________________________________________________________________________

Maple [F]
time = 0.13, size = 0, normalized size = 0.00 \[\int x \left (e \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \,\mathrm {arccsch}\left (c x \right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x)

[Out]

int(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x, algorithm="maxima")

[Out]

1/5*(x^2*e + d)^(5/2)*a*e^(-1) + 1/5*((x^4*e^2 + 2*d*x^2*e + d^2)*sqrt(x^2*e + d)*e^(-1)*log(sqrt(c^2*x^2 + 1)
 + 1) + 5*integrate(1/5*(c^2*x^5*e^2 + 2*c^2*d*x^3*e + c^2*d^2*x)*sqrt(x^2*e + d)/(c^2*x^2*e + (c^2*x^2*e + e)
*sqrt(c^2*x^2 + 1) + e), x) - 5*integrate(1/5*(c^2*x^5*(5*log(c) + 1)*e^2 + ((5*d*log(c) + 2*d)*c^2*e + 5*e^2*
log(c))*x^3 + (c^2*d^2 + 5*d*e*log(c))*x + 5*(c^2*x^5*e^2 + (c^2*d*e + e^2)*x^3 + d*x*e)*log(x))*sqrt(x^2*e +
d)/(c^2*x^2*e + e), x))*b

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 725 vs. \(2 (228) = 456\).
time = 0.86, size = 1487, normalized size = 5.51 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x, algorithm="fricas")

[Out]

[1/160*(8*b*c^5*d^(5/2)*log((c^4*d^2*x^4 + 8*c^2*d^2*x^2 + x^4*cosh(1)^2 + x^4*sinh(1)^2 - 4*(c^3*d*x^3 + c*x^
3*cosh(1) + c*x^3*sinh(1) + 2*c*d*x)*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*sqrt(d)*sqrt((c^2*x^2 + 1)/(c^2*x^2))
 + 8*d^2 + 2*(3*c^2*d*x^4 + 4*d*x^2)*cosh(1) + 2*(3*c^2*d*x^4 + x^4*cosh(1) + 4*d*x^2)*sinh(1))/x^4) + (15*b*c
^4*d^2 - 10*b*c^2*d*cosh(1) + 3*b*cosh(1)^2 + 3*b*sinh(1)^2 - 2*(5*b*c^2*d - 3*b*cosh(1))*sinh(1))*sqrt(cosh(1
) + sinh(1))*log(c^4*d^2 + (8*c^4*x^4 + 8*c^2*x^2 + 1)*cosh(1)^2 + (8*c^4*x^4 + 8*c^2*x^2 + 1)*sinh(1)^2 + 4*(
c^4*d*x + (2*c^4*x^3 + c^2*x)*cosh(1) + (2*c^4*x^3 + c^2*x)*sinh(1))*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*sqrt(
(c^2*x^2 + 1)/(c^2*x^2))*sqrt(cosh(1) + sinh(1)) + 2*(4*c^4*d*x^2 + 3*c^2*d)*cosh(1) + 2*(4*c^4*d*x^2 + 3*c^2*
d + (8*c^4*x^4 + 8*c^2*x^2 + 1)*cosh(1))*sinh(1)) + 32*(b*c^5*x^4*cosh(1)^2 + b*c^5*x^4*sinh(1)^2 + 2*b*c^5*d*
x^2*cosh(1) + b*c^5*d^2 + 2*(b*c^5*x^4*cosh(1) + b*c^5*d*x^2)*sinh(1))*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*log
((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) + 4*(8*a*c^5*x^4*cosh(1)^2 + 8*a*c^5*x^4*sinh(1)^2 + 16*a*c^5*
d*x^2*cosh(1) + 8*a*c^5*d^2 + 16*(a*c^5*x^4*cosh(1) + a*c^5*d*x^2)*sinh(1) + (9*b*c^4*d*x*cosh(1) + (2*b*c^4*x
^3 - 3*b*c^2*x)*cosh(1)^2 + (2*b*c^4*x^3 - 3*b*c^2*x)*sinh(1)^2 + (9*b*c^4*d*x + 2*(2*b*c^4*x^3 - 3*b*c^2*x)*c
osh(1))*sinh(1))*sqrt((c^2*x^2 + 1)/(c^2*x^2)))*sqrt(x^2*cosh(1) + x^2*sinh(1) + d))/(c^5*cosh(1) + c^5*sinh(1
)), 1/160*(16*b*c^5*sqrt(-d)*d^2*arctan(1/2*(c^3*d*x^3 + c*x^3*cosh(1) + c*x^3*sinh(1) + 2*c*d*x)*sqrt(x^2*cos
h(1) + x^2*sinh(1) + d)*sqrt(-d)*sqrt((c^2*x^2 + 1)/(c^2*x^2))/(c^2*d^2*x^2 + d^2 + (c^2*d*x^4 + d*x^2)*cosh(1
) + (c^2*d*x^4 + d*x^2)*sinh(1))) + (15*b*c^4*d^2 - 10*b*c^2*d*cosh(1) + 3*b*cosh(1)^2 + 3*b*sinh(1)^2 - 2*(5*
b*c^2*d - 3*b*cosh(1))*sinh(1))*sqrt(cosh(1) + sinh(1))*log(c^4*d^2 + (8*c^4*x^4 + 8*c^2*x^2 + 1)*cosh(1)^2 +
(8*c^4*x^4 + 8*c^2*x^2 + 1)*sinh(1)^2 + 4*(c^4*d*x + (2*c^4*x^3 + c^2*x)*cosh(1) + (2*c^4*x^3 + c^2*x)*sinh(1)
)*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*sqrt((c^2*x^2 + 1)/(c^2*x^2))*sqrt(cosh(1) + sinh(1)) + 2*(4*c^4*d*x^2 +
 3*c^2*d)*cosh(1) + 2*(4*c^4*d*x^2 + 3*c^2*d + (8*c^4*x^4 + 8*c^2*x^2 + 1)*cosh(1))*sinh(1)) + 32*(b*c^5*x^4*c
osh(1)^2 + b*c^5*x^4*sinh(1)^2 + 2*b*c^5*d*x^2*cosh(1) + b*c^5*d^2 + 2*(b*c^5*x^4*cosh(1) + b*c^5*d*x^2)*sinh(
1))*sqrt(x^2*cosh(1) + x^2*sinh(1) + d)*log((c*x*sqrt((c^2*x^2 + 1)/(c^2*x^2)) + 1)/(c*x)) + 4*(8*a*c^5*x^4*co
sh(1)^2 + 8*a*c^5*x^4*sinh(1)^2 + 16*a*c^5*d*x^2*cosh(1) + 8*a*c^5*d^2 + 16*(a*c^5*x^4*cosh(1) + a*c^5*d*x^2)*
sinh(1) + (9*b*c^4*d*x*cosh(1) + (2*b*c^4*x^3 - 3*b*c^2*x)*cosh(1)^2 + (2*b*c^4*x^3 - 3*b*c^2*x)*sinh(1)^2 + (
9*b*c^4*d*x + 2*(2*b*c^4*x^3 - 3*b*c^2*x)*cosh(1))*sinh(1))*sqrt((c^2*x^2 + 1)/(c^2*x^2)))*sqrt(x^2*cosh(1) +
x^2*sinh(1) + d))/(c^5*cosh(1) + c^5*sinh(1))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x \left (a + b \operatorname {acsch}{\left (c x \right )}\right ) \left (d + e x^{2}\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x**2+d)**(3/2)*(a+b*acsch(c*x)),x)

[Out]

Integral(x*(a + b*acsch(c*x))*(d + e*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(e*x^2+d)^(3/2)*(a+b*arccsch(c*x)),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^(3/2)*(b*arccsch(c*x) + a)*x, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int x\,{\left (e\,x^2+d\right )}^{3/2}\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(d + e*x^2)^(3/2)*(a + b*asinh(1/(c*x))),x)

[Out]

int(x*(d + e*x^2)^(3/2)*(a + b*asinh(1/(c*x))), x)

________________________________________________________________________________________